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Abstract. Two types of surface models have been investigated by Monte Carlo simulations on triangulated
spheres with compartmentalized domains. Both models are found to undergo a first-order collapsing transi-
tion and a first-order surface fluctuation transition. The first model is a fluid surface one. The vertices can
freely diffuse only inside the compartments, and they are prohibited from the free diffusion over the surface
due to the domain boundaries. The second is a skeleton model. The surface shape of the skeleton model is
maintained only by the domain boundaries, which are linear chains with rigid junctions. Therefore, we can
conclude that the first-order transitions occur independent of whether the shape of surface is mechanically
maintained by the skeleton (=the domain boundary) or by the surface itself.

PACS. 64.60.-i General studies of phase transitions – 68.60.-p Physical properties of thin films, nonelec-
tronic – 87.16.Dg Membranes, bilayers, and vesicles

1 Introduction

The crumpling transition of membranes is an interest-
ing topic in the softmatter physics as well as in the bi-
ological physics [1–3]. A well-known model for such tran-
sition is the surface model of Helfrich, Polyakov, and
Kleinert [4–6]. A considerable number of theoretical and
numerical studies have been devoted to reveal the phase
structure of the model [7–17]. Recently, it was shown by
Monte Carlo (MC) simulations that the model undergoes
a first-order transition on spherical and fixed connectivity
surfaces [11,12], and the transition is universal [13]. The
vertices can move only locally on the surface because of
the fixed connectivity nature in those surface models.

However, the crumpling transition is not yet clearly un-
derstood in biological membranes. If we consider the pos-
sibility of the transition in the cell membranes, we should
take account of the fluid nature such as the lateral diffu-
sion of lipids.

Conventionally, the free diffusion of lipids has been re-
alized by the dynamical triangulation technique in the sur-
face model [14–17]. The diffusion of lipids has no cost in
energy on fluid surfaces.

In the cell membranes, however, the free diffusion of
membrane proteins and lipids is suffered from heteroge-
neous structures. Such molecules are known to undergo
the so-called hop diffusion over the surface, which was re-
cently found experimentally [18]. The free diffusion of the
molecules is prohibited due to the cytoskeleton. The dif-
fusion rate is, therefore, 10–100 times lower than that of
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artificial membranes, which are usually homogeneous and
have no such domain structure. Moreover, some artificial
membranes are considered to have skeletons, because they
are partly polymerized [19].

Motivated by this fact observed in the cell membranes,
we study firstly in this paper a dynamically triangulated
surface model with compartmentalized domains whose
boundaries are composed of triangle edges (or bonds) that
are not to be flipped. The diffusion is constrained so that
vertices can diffuse only inside the compartments, and
hence the vertices never jump across from one compart-
ment to the other compartments. Nevertheless, we con-
sider that such constrained lateral diffusion can simulate
the hop diffusion in the cell membranes as the first ap-
proximation.

It is also interesting to see whether the transition oc-
curs in a simplified skeleton model, where only skeletons
maintain the mechanical strength of the surface. Skele-
ton models for the cytoskeleton were already investigated
in [20]. A hard-wall and hard-core potential was assumed
on the polymer chains with junctions, and the responses
to some external stress and the compression modulus were
obtained [20]. Giant fluid vesicles coated with skeletons
was experimentally investigated, and the mechanical prop-
erties were reported [21], where the actin filaments intro-
duce an inhomogeneous structure in the homogeneous ar-
tificial membrane.

In [22], the phase structure of a surface model with
skeleton was investigated, and it was reported that the
model has a first-order transition between the smooth
phase and the crumpled phase. The interaction of the
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model in [22] is described by a one-dimensional bend-
ing energy for linear chains (or bonds) and the two-
dimensional bending energy for junctions. The two-
dimensional Gaussian bond potential is also assumed
in the Hamiltonian. Consequently, a simplified skeleton
model can be obtained from the model in [22] by replac-
ing the elastic junction with a rigid junction.

Therefore, we study secondly in this paper the rigid
junction model by using the canonical Monte Carlo sim-
ulations and see how the transition of [22] occurs in such
a simplified model. We must note that the rigid junction
model is not identical to the elastic junction model in [22].
In fact, there are two types of elasticity at the junctions;
one is the out-of-plane elasticity and the other is the in-
plane elasticity. The former elasticity can be rigid in the
limit of infinite bending rigidity bJ →∞ in the elastic junc-
tion model of [22], however, the in-plane elasticity can not
be controlled in the elastic junction model. Therefore, the
rigid junction model in this paper and the elastic junction
model in [22] are considered to be two different models.

2 Fluid surface model

By dividing every edge of the icosahedron into � pieces
of the uniform length, we have a triangulated surface of
size N = 10�2 +2 (=the total number of vertices). The
starting configurations are thus characterized by N5 =12
and N6 =N−12, where Nq is the total number of vertices
with the co-ordination number q.

The compartmentalized structure is built on the sur-
face by keeping the boundary bonds unflipped in the MC
simulations with dynamical triangulation. The boundary
of the compartment is constructed from a sequence of
bonds that remain unflipped. The total number NC of
compartments depends on the surface size N . We fix n
the total number of vertices inside a compartment to the
following values:

n = 21, 36, 66, 91, 120, (1)
(# of vertices in a compartment).

As a consequence, NC is increased with the increasing N .
The reason why we fix n is that the size of compartment is
considered to be finite, and then it is expected that total
number of lipids in the compartment also remains finite in
the cell membranes. We must emphasize that the finiteness
of n, rather than the value of n, is physically meaningful,
because we do not always have one to one correspondence
between the vertices and the lipid molecules.

Figures 1a, 1b show surfaces of (N, n)=(2562, 21) and
(N, n)=(15212, 66) for the starting configurations of MC
simulations. Thick lines denote the compartment bound-
ary consisting of the bonds that are not to be flipped.
Vertices on the boundary of compartments can locally
fluctuate, and they are prohibited from the diffusion. The
remaining vertices freely diffuse only inside the compart-
ments. The starting configurations in Figures 1a, 1b for
the fluid model simulations are almost identical to those

Fig. 1. Starting configuration of surfaces of (a) (N, n) =
(2562, 21) and (b) (N, n) = (15212, 66), where n is the total
number of vertices inside one compartment. Thick lines denote
the compartment boundary consisting of bonds.

for the skeleton model simulations, which will be defined
in the following section.

We note that the fixed connectivity surface model is
obtained from the compartmentalized fluid model in the
limit n → 1, where the vertices are prohibited from the
free diffusion. On the contrary, we obtain the fluid surface
model in the limit of n→N , where all the vertices freely
diffuse over the surface.

The compartmentalized fluid surface model is defined
by the partition function

Z =
′∑

T

∫ ′ N∏

i=1

dXi exp [−S(X, T )] , (2)

S(X, T ) = S1 + bS2,

where b is the bending rigidity,
∫ ′ denotes that the center

of the surface is fixed in the integration. S(X, T ) denotes
that the Hamiltonian S depends on the position variables
X of the vertices and the triangulation T .

∑′
T denotes

the sum over all possible triangulations T , which keep the
compartments unflipped. The Gaussian term S1 and the
bending energy term S2 are defined by

S1 =
∑

(ij)

(Xi − Xj)
2
, S2 =

∑

(ij)

(1 − ni · nj), (3)

where
∑

(ij) in S1 is the sum over bonds (ij) connecting
the vertices i and j, and

∑
(ij) in S2 is also the sum over

bonds (ij), which are edges of the triangles i and j. The
symbol ni in S2 denotes the unit normal vector of the
triangle i. We emphasize that the compartment boundary
gives no mechanical strength to the surface in this model.

The bending rigidity b has unit of kT , where k is the
Boltzmann constant, and T is the temperature. The sur-
face tension coefficient a of S1 is fixed to be a = 1; this
is always possible because of the scale invariant property
of the model. In fact, in the expression aS1+bS2 we im-
mediately understand that a = 1 is possible, because the
coefficient a of S1 can be eliminated due to the scale in-
variance of the partition function. Since the unit of a is
(1/length)2, the length unit of the model is given by

√
1/a.

We use the unit of length provided by
√

1/a = 1 in this
paper, although a is arbitrarily chosen to be fixed.
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3 Skeleton model

The model is defined on a triangulated surface, which is
characterized by N the total number of vertices includ-
ing the junctions, NS the total number of vertices on the
chains, NJ the total number of junctions, and L the length
of chains between junctions. The junctions are assumed as
rigid plates; twelve of them are pentagon and the others
are hexagon. It should be noted again that NJ is included
in N ; a junction is counted as a vertex.

The surface of size (N, NS , NJ , L) = (2322, 600, 42, 6)
corresponds to that shown in Figure 1a for the fluid model.
The reason why N = 2322 of the surface is smaller than
N =2562 of the one in Figure 1a is because the junctions
are rigid objects. One hexagonal junction reduces N by 6,
and one pentagonal junction also reduces N by 5 if they
were assumed as rigid objects. Thus, we can check that
2562=2322+6× 30+5 × 12, where 30 and 12 are the to-
tal number of pentagonal junctions and that of hexagonal
junctions, respectively.

We fix the chain length L such that

L = 6 (n = 21), L = 11 (n = 66), (4)

which respectively correspond to the values n=21, n=66;
the total number of vertices inside a compartment in equa-
tion (1). The reason why we fix L is the same as that for n.

The Hamiltonian of the model is given by a linear com-
bination of the two-dimensional Gaussian bond potential
S1 and the one-dimensional bending energy S

(1)
2 , which

are defined by

S1 =
∑

(ij)

(Xi − Xj)
2
, S

(1)
2 =

∑

(ij)

[
1 − cos θ(ij)

]
. (5)

In these expressions,
∑

(ij) in S1 denotes the sum over all
the bonds (ij) connecting the vertices i and j, and

∑
(ij)

in S
(1)
2 denotes the sum over bonds i and j, which contain

not only bonds in the chains but also virtual bonds that
connect the center and the corners of the rigid junctions.
The symbol θ(ij) in S

(1)
2 is the angle between the bonds

i and j, which include the virtual bonds. The Gaussian
potential S1 is defined on all the bonds including those on
the chains. As a consequence, the model is considered to
be a surface model, although the mechanical strength is
maintained by one-dimensional elastic skeletons joined to
each other at the rigid junctions.

Triangulated spherical surfaces for the skeleton model
are almost identical to those shown in Figures 1a, 1b as
mentioned above. Only difference between the surfaces is
whether the junctions are rigid objects or not. Figure 2
shows a hexagonal rigid junction connected to chains,
where the angle θ(ij) is defined not only at the vertices
on the chains but also at the corners (=virtual vertices) of
the junction. The triangular lattices attached to the chains
were eliminated from Figure 2 to clarify the chains.

We should comment on the size of the junctions. The
junctions are two-dimensional objects and therefore have
their own size to be fixed. The size of junction can be

θ(ij) θ(ij)

Fig. 2. A hexagonal junction connected to chains. The angle

θ(ij) in S
(1)
2 is defined not only at the vertices on the chains

but also at the corners (=virtual vertices) of the junction. The
triangular lattices attached to the chains were eliminated from
the figure to clarify the chains.

specified by the edge length R; the perimeter length of the
pentagonal (hexagonal) junction is therefore expressed by
5R (6R). In this paper, we fix the size of the junctions
such that

R = 0.1. (6)

The value R = 0.1 is quite smaller than that of the elas-
tic junctions in [22], where the edge length squared is
R2 � 0.5 because of the relation S1/N = 1.5, which is
also satisfied in the fluid model defined in the previous
section.

We must note that the junction size in Figure 2 were
drawn larger, comparing to the bond length, than that
expected from equation (6). In the following section, we
discuss how do we fix the size R to the assumed value in
equation (6) in the MC simulations.

The partition function Z of the skeleton model is de-
fined by

Z =
∫ ′ N∏

i=1

dXi exp [−S(X)] , S(X) = S1 + bS
(1)
2 , (7)

where b is the bending rigidity corresponding to the one-
dimensional bending energy, and

∫ ′ denotes that the cen-
ter of the surface is fixed. The integration

∏N
i=1 dXi is a

product of the integration over vertices and that of junc-
tions such that

N∏

i=1

dXi =
∏

vertices i

dXi

∏

junctions i

dXi, (8)

where
∏

junctions i dXi is the integration over the degrees
of freedom for the three-dimensional translations and ro-
tations.

4 Monte Carlo technique

The vertices X are shifted so that X ′=X+δX , where δX is
randomly chosen in a small sphere. The new position X ′ is
accepted with the probability Min[1, exp(−∆S)], where
∆S =S(new)−S(old).

The summation over T in the fluid model partition
function Z of equation (2) is performed by the standard
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Table 1. The size N of surfaces for the fluid model simulations.
Three sizes of surfaces are assumed for each compartment size
n except for n = 120.

n=21 n=36 n=66 n=91 n=120
2562 1002 1692 2252 2892
5762 4002 6762 9002 11 562

10 242 9002 15 212 20 252

bond flip technique. The bonds are labeled with sequen-
tial numbers. The total number of bonds NB is given by
NB = 3N−6, which includes the bonds in the boundary
of compartments. Firstly, the odd-numbered bonds are se-
quentially chosen, to be flipped and secondly, the remain-
ing even-numbered bonds are chosen. The flip is accepted
with the probability Min[1, exp(−∆S)]. In this procedure,
the compartment boundary remains unflipped. N updates
of X and NB/2 updates of T are consecutively performed
and make one MCS (Monte Carlo Sweep). The radius of
the small sphere for δX is chosen so that the rate of accep-
tance for X is about 50%, which is controlled by a small
number for the radius δX at the beginning of the simu-
lations. We introduce the lower bound 1 × 10−8 for the
area of triangles. No lower bound is imposed on the bond
length.

The assumed sizes in the fluid model simulations are
listed in Table 1. Three sizes of surfaces are assumed for
each compartment size n except for n = 120. The third
size for n = 91 is relatively large and therefore time con-
suming for the fluid simulations, and the size N = 11 562
is sufficiently large to show that there is no phase transi-
tion on the surface of n = 120.

Total number of MCS after the thermalization MCS
at b close to the transition point is about 2×108 ∼ 3×108

MCS on the N ≥9002 surfaces and 1×108 ∼ 1.7×108 MCS
on the N ≤ 6762 surfaces, and relatively smaller number
of MCS at b far from the transtion point. The thermaliza-
tion MCS 1×107 ∼ 1.7×108 MCS on the N ≥9002 surfaces
and 1×107 ∼ 3×107 MCS on the N ≤6762 surfaces. The
reason of such a large number (1.7×108) of thermaliza-
tion MCS seems due to the discontinuous nature of the
transition. The starting configurations of MC are just like
those shown in Figures 1a and 1b, and hence they are in
the smooth phase. In fact, large surfaces in the collapsed
phase close to the transition point eventually collapsed
after such a long thermalization MCS.

The update of X in MC for the skeleton model parti-
tion function in equation (7) can be divided into two steps,
which are corresponding to the integrations

∏
vertices i dXi

and
∏

junctions i dXi in equation (8). The first is the update
of X of vertices including those in the chains. The second
is the update of the position of the junctions as three-
dimensional rigid objects. This can be further divided
into two processes: the first is a random three-dimensional
translation, and the second is a random three-dimensional
rotation. All of these MC processes are independently per-
formed under about 50% acceptance rate.

The junction size R is fixed to R = 0.1 in equation (6)
during the thermalization MCS. The initial value of R is

Table 2. The size N of surfaces for the skeleton model simu-
lations. Four sizes of surfaces are assumed for L=6, and three
sizes for L=11.

L N NS NJ L N NS NJ

6 5222 1350 92 11 6522 1200 42
6 9282 2400 162 11 14 672 2700 92
6 14 502 3750 252 11 26 082 4800 162
6 20 882 5400 362

given by R � 0.7 on the surfaces such as those shown
in Figures 1a and 1b. Thus, we reduce R from R � 0.7
to R = 0.1 by ∆R = 6×10−6 at every 25 MCS in the
first 2.5 × 106 MCS. Because of this forced reduction of
the junction size, the equilibrium statistical mechanical
condition seems to be violated in the first 2.5× 106 MCS.
Therefore, relatively many thermalization (1.75 × 107 or
more) MCS is performed after the first 2.5× 106 MCS for
the reduction.

We use surfaces of size listed in Table 2 for the skeleton
model simulations. Four sized are assumed for L=6, and
three sizes for L = 11.

The total number of MCS is about 1.6×108 ∼ 2×108

for the N ≤ 6522 surfaces and 3×108 ∼ 4×108 for the
N ≥9282 surfaces. The thermalization MCS is 2×107 for
the N ≤6522 surfaces and 2×107 ∼ 1×108 for the N ≤9282
surfaces.

A random number sequence called Mersenne
Twister [23] is used in the simulations.

5 Fluid model simulations

First, we show in Figures 3a, 3b snapshots of the
(N, n)=(20 252, 91) surfaces obtained at b = 1.57 in the
collapsed phase and at b=1.58 in the smooth phase. Fig-
ures 3c, 3d show the surface sections. Thus, we confirmed
that the smooth phase can be seen at finite b close to the
transition point.

The crumpling transition is conventionally understood
as the one of surface fluctuation accompanied by surface
collapsing phenomena, which can be seen in our surface
model as we have seen in the snapshots in Figures 3a–3d.
Therefore, we expect that the mean square size X2 reflects
the collapsing transition on spherical surfaces. The mean
square size X2 is defined by

X2 =
1
N

∑

i

(
Xi − X̄

)2
, X̄ =

1
N

∑

i

Xi, (9)

where X̄ is the center of the surface. Figures 4a–4e show
X2 obtained on the surfaces of n = 21, n = 36, n = 66,
n = 91, and n = 120, respectively. Solid lines connecting
the data were obtained by the multihistogram reweighting
technique [24]. A discontinuous change of X2 can be seen
in the cases of n ≤ 91 when the size N increases, while
X2 largely fluctuates at n=120. This indicates that a first-
order transition occurs at n≤91 and that it disappears at
n = 120. We also find that the transition point bn moves
left on the b-axis as n decreases. It is expected in the
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Fig. 3. Snapshot of the fluid surface of (N, n) = (20 252, 91)
obtained at (a) b = 1.57 in the collapsed phase and at (b)
b = 1.58 in the smooth phase, and (c, d) the surface sections.
The mean square size X2 defined in equation (9) is X2�15 in
(a) and X2�151 in (b).

1.4 1.5
0

50
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(a)

X2

b

N=5762

N=2562

N=10242

n=21

1.45 1.55

(b) b
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(c) b
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N=15212
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1.6 1.65

(d) b

N=9002

N=2252

N=20252

n=91

1.6 1.65

(e) b

N=2892

N=11562

n=120

Fig. 4. The mean square size X2 versus b obtained on the fluid
surfaces of (a) n = 21, (b) n = 36, (c) n = 66, (d) n = 91, and
(e) n = 120. Solid lines were obtained by the multihistogram
reweighting technique.

limit of n→1 that bn reduces to the value corresponding
to the transition point of the fixed connectivity surface
model [12]. We can also confirm that bn disappears in the
limit of n→N at sufficiently large N , because we find no
transition at n=120.

The crumpling transition is originally understood as
the one for surface fluctuation phenomena. Therefore, the
bending energy S2/NB, defined in equation (3), is ex-
pected to reflect the transition. Figures 5a–5e show S2/NB

versus b corresponding to n = 21, n = 36, n = 66, n = 91,
and n=120, respectively. Discontinuous change of S2/NB

can also be seen at b where X2 discontinuously changes,
although it is not sufficiently clear in the figures.

In order to see the gap of S2/NB more clearly, we show
the variation of the gap of S2/NB against n in Figure 6.
The solid circles (•) and the dashed lines denote the value
of S2/NB in the smooth (the crumpled) phase at the first-
order transition point. The diamonds (�) correspond to

1.4 1.5

0.2

0.25

0.3

0.35

(a)

S2/NB

b

:N=10242
:N=5762

n=21

1.45 1.55

(b) b

:N=9002
:N=4002

n=36

1.5 1.6

(c) b

:N=15212
:N=6762

n=66

1.55 1.65

(d) b

:N=20252
:N=9002

n=91

1.6 1.65

(e) b

:N=11562
:N=2892

n=120

Fig. 5. The bending energy S2/NB versus b obtained on the
surface of (a) n=21, (b) n=36, (c) n=66, (d) n=91, and (e)
n=120. NB(=3N−6) is the total number of bonds.

1.4 1.5 1.6
0.2

0.25

0.3

0.35

S2/NB

b

n=21

n=36

n=66

n=91

n=120

Fig. 6. The variation of the gap of S2/NB against n, which
were obtained on the surfaces of size (N, n) = (10 242, 21),
(9002, 36), (15 212, 66), (20 252, 91), and (11 562, 120). The
solid circles (•) and the dashed lines denote the value of S2/NB

in the smooth (the crumpled) phase at the first-order transition
point. The diamonds (�) correspond to the results obtained on
the surface (20 252, 91). The symbol (⊗) denotes the critical
point of transition, where the discontinuous transition termi-
nates and turns to a continuous or a higher-order one. The
critical value nc is expected to be nc�91.

the results obtained on the surface (20 252, 91). We find
that the value of S2/NB in the smooth phase (or in the
crumpled phase) increases as n decreases at the transi-
tion point. The value of S2/NB at the transition point
becomes identical to the one of the fixed connectivity sur-
face model in the limit of n→1 [12]. On the contrary, the
discontinuous change of S2/NB is expected to disappear
at sufficiently large n, because the discontinuity of S2/NB

seen clearly at n=21 ∼ 66 disappears when n→N at suf-
ficiently large N . This implies that there exists a finite nc,
where the first-order transition terminates and turns to
a continuous or a higher-order one. The gap of S2/NB at
n=21 reduces as n increases and eventually goes to zero at
n=nc, which is expected to be nc�91. At n=91, S2/NB

seems continuous while X2 is discontinuous as confirmed
in Figure 4d.

We note that the maximum co-ordination number
qmax obtained throughout the simulations is as follows:
qmax=38 on the (N, n) = (10242, 21) surface at b = 1.38,
qmax = 42 on the (N, n) = (9002, 36) surface at b = 1.42,
qmax = 40 on the (N, n) = (15 212, 66) surface at b = 1.51,
qmax = 42 on the (N, n) = (20 252, 91) surface at b = 1.55,
and qmax = 44 on the (N, n) = (11 562, 120) surface at
b=1.56.
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Fig. 7. The histogram h(S2)
and the corresponding varia-
tion of S2/NB against MCS
obtained on the surfaces of
(a, b) (N, n) = (5762, 21), (c, d)
(N, n)= (4002, 36), (e, f) (N, n)=
(6762, 66), and (g, h) (N, n) =
(9002, 91).

In order to show the discontinuity in S2/NB more
clearly, we plot in Figures 7a–7h the distribution (or his-
togram) h(S2) of S2/NB and the corresponding varia-
tion of S2/NB. These were obtained on the surfaces of
(N, n) = (5762, 21), (4002, 36), (6762, 66), and (9002, 91).
The discontinuity of S2/NB can be seen in the histogram
on the N ≥ 5762 surfaces. Because of the size effect, the
transition appears to be continuous on the N = 4002
surface. The double peak at (N, n) = (5762, 21) is more
clear than that at (N, n)= (6762, 66), because the gap of
S2/NB reduces as n increases. We should note that the
double peak structure is very hard to see in h(S2) on the
N ≥ 9002 surfaces at n = 36. When the configuration is
once trapped in the smooth (the crumpled) state, it hardly
changes to the crumpled (the smooth) state at the tran-
sition point on such large surfaces. This problem may be
resolved with more sophisticated MC techniques [27,28].
No double-peak structure is found in Figure 7g and the
variation of S2/NB smoothly varies in Figure 7h. This in-
dicates that the transition is a continuous one at n = 91
because of the fact that the surface of (20 252, 91) becomes
smooth at b ≥ 1.58 and crumpled at b ≤ 1.57, which was
clarified from X2 in Figure 4d. Thus, the critical value
was expected to be nc�91.

The phase transition is expected to disappear from the
fluid surface model defined on the surfaces that have no
compartment. In order to show this, we performed MC
simulations on the surfaces without the compartments up
to the size N =4842. Figure 8a shows X2 versus b. We can
see no abrupt growing of X2 in the figure. The bending
energy S2/NB shown in Figure 8b, where the variation of
S2 versus b seems almost independent of N . The specific
heat CS2 , which is defined by CS2 =(b2/N)〈 (S2−〈S2〉)2〉,
is expected to reflect the phase transition. However, we
can see no anomalous behavior in CS2 shown in Figure 8c;
there can be seen no peak in CS2 . Thus we confirmed that
the phase transition disappears from the model if n→N
at sufficiently large N .

We must comment on the relation between the above
results and those of fluid surface simulations in [25], be-
cause the phase transition can be seen in [25] while it can
not in Figures 8a, 8b. The difference between the bond flip
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:N=2252
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Fig. 8. (a) X2 vs. b, (b) S2/NB versus b, and (c) CS2 versus
b obtained on the fluid surface model without the compart-
mentalized structure. The symbol n=N drawn on the figures
denotes that the surfaces are those without the compartment.

procedure in this paper and that of [25] is the reason why
the phase transition can be seen in the model in [25] and
it can not be seen in the same model in Figures 8a, 8b. In
the simulations of this paper we label the bonds by a se-
quence of numbers as stated above and perform the bond
flip by using the sequential numbers. On the contrary, a
vertex is firstly chosen randomly in [25], and secondly a
bond is randomly chosen to be flipped from the bonds
connecting the chosen vertex. As a consequence, this pro-
cedure gives a large (small) weight to the vertices which
have small (large) co-ordination number in the dynami-
cal triangulations. Therefore, the procedure in [25] seems
change effectively the coefficient α of the co-ordination
dependent term −α

∑
i log qi, which comes from the inte-

gration measure
∏

i dXiq
α
i , where α is fixed to α = 0 in

this paper and in [25]. We know that the phase structure
depends on the co-ordination dependent term in the fluid
surface model [26].

6 Skeleton model simulations

Snapshots of the skeleton surfaces are shown in Fig-
ures 9a–9d. Figure 9a is a surface of size (N, NS , NJ , L)=
(26 072, 4800, 162, 11) obtained at b=12.3 in the crumpled
phase, and Figure 9b is the one obtained at b=12.4 in the
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Fig. 9. Snapshot of the surface of size (N, NS , NJ , L) =
(26 082, 4800, 162, 11) obtained in the collapsed phase at (a)
b=12.3 and in the smooth phase at (b) b=12.4, both of which
are close to the transition point. The mean square size X2 is
X2�12 in (a) and X2�98 in (b).
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:N=14672
:N=6522

L=11

Fig. 10. The Gaussian bond potential S1/N versus b obtained
on the surfaces of (a) L = 6 and (b) L = 11. S1/N slightly
deviates from S1/N �1.5.

smooth phase. The surface sections of Figures 9a and 9b
are shown in Figures 9c and 9d, respectively. These fig-
ures were drawn in the same scale. We immediately see
the surface in the smooth phase is actually swollen, while
the surface is collapsed in the collapsed phase.

The Gaussian bond potential S1/N is shown against
b in Figures 10a and 10b, which correspond to the lengths
L=6 and L=11, respectively. The values of S1/N in the
figures slightly deviate from S1/N = 1.5, which is satis-
fied on the surface without the rigid junctions or the rigid
junctions of negligible size. The reason of this discrepancy
is because the surface includes the rigid junctions of fi-
nite size. A vertex is the zero-dimensional point, while the
rigid junction is a two-dimensional plate and hence shares
an area of the surface. We find a gap or a jump in S1/N
of the (N, NS , NJ , L) = (26 082, 4800, 162, 11) surface in
Figure 10b, which can be viewed as a sign of a discontin-
uous transition.
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Fig. 11. The mean square size X2 versus b obtained on the
surfaces of (a) L=6 and (b) L=11. The curves are drawn by
the multihistogram reweighting technique.

Figures 11a and 11b are plots of X2 against b obtained
under L=6 and L=11. We find that the variation of X be-
comes rapid against b as N increases. Thus, it is expected
that the variation of X2 has a jump at intermediate value
of b in either case of L.

The bending energy S
(1)
2 /N ′

S is expected to reflect the
transition, where N ′

S is given by

N ′
S = NS + 6NJ − 12. (10)

S
(1)
2 /N ′

S is the bending energy per vertex, because N ′
S is

the total number of vertices where S
(1)
2 is defined. N ′

S in-
cludes virtual vertices which are the corners of the junc-
tions (see also Fig. 2), which are not counted as vertices
and hence are not included in NS . Total number of vir-
tual vertices are 6NJ − 12, because the hexagonal junc-
tion contains 6 virtual vertices, and the total number of
pentagonal junction is 12. Thus, we have equation (10)
for N ′

S , and therefore we have N ′
S = 1890, N ′

S = 3360,
N ′

S = 5250, and N ′
S = 7560 for the length L = 6 surfaces

of size (N, NS , NJ) = (5222, 1350, 92), (9282, 2400, 162),
(14 502, 3750, 252), and (20 882, 5400, 362); and N ′

S =1440,
N ′

S =3240, and N ′
S =5760 for the length L=11 surfaces of

size (N, NS , NJ)=(6522, 1200, 42), (14 672, 2700, 92), and
(26 082, 4800, 162).

Figures 12a and 12b are plots of S
(1)
2 /N ′

S against b
obtained under L = 6 and L = 11. We find the expected
behavior in S

(1)
2 /N ′

S under both conditions L=6 and L=
11; S

(1)
2 /N ′

S has a gap (or a jump) at intermediate b. This
clearly shows that the surface fluctuation transition is of
first order.

The transition can also be reflected in the two-
dimensional extrinsic curvature, which is defined by

S
(2)
2 =

∑

〈ij〉
(1 − ni · nj) , (11)

where ni is the unit normal vector of the triangle i. The
definition equation (11) of S

(2)
2 is identical to that of S2 in

equation (3). In S
(2)
2 ,

∑
〈ij〉 denotes the summation over

all nearest neighbor triangles i and j that have the com-
mon bond 〈ij〉, which includes bonds belonging to the
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Fig. 12. The one-dimensional bending energy S
(1)
2 /N ′

S versus
b obtained on the surfaces of (a) L=6 and (b) L=11.
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Fig. 13. The two-dimensional extrinsic curvature S
(2)
2 /NB

against b obtained on the surfaces of (a) L=6 and (b) L=11.

S
(2)
2 is defined by equation (11) and is not included in the

Hamiltonian. NB is the total number of bonds where S
(2)
2 is

defined.

skeleton chains. NB denotes the total number of bonds
where S

(2)
2 is defined, and it is given by NB =

∑
〈ij〉 1.

Note that NB includes virtual bonds, which are the edges
of the rigid junctions. In fact, we define S

(2)
2 even on the

virtual bonds, because it is reasonable to define extrinsic
curvature on those edges. It is also noted that S

(2)
2 is not

included in the Hamiltonian, and therefore S
(2)
2 gives no

mechanical strength to the surface.
The two-dimensional extrinsic curvature S

(2)
2 /NB is

plotted in Figures 13a and 13b against b, which are cor-
responding to the lengths L=6 and L=11. We find that
the dependence of S

(2)
2 /NB on b shown in Figure 13 is al-

most identical to that of S
(1)
2 /N ′

S in Figure 12. The gap
(or jump) seen in S

(2)
2 /NB also supports that the surface

fluctuation transition is of first order.
The specific heat corresponding to the one-dimensional

bending energy S
(1)
2 is defined by

C
S

(1)
2

=
b2

N ′
S

〈 (
S

(1)
2 −〈S(1)

2 〉
)2

〉
, (12)

which can also reflect phase transitions if it has an anoma-
lous behavior. Figures 14a and 14b show C

S
(1)
2

versus b ob-
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Fig. 14. The specific heat C
S

(1)
2

for S
(1)
2 versus b obtained on

the surfaces of (a) L = 6 and (b) L = 11. C
S

(1)
2

is defined by

equation (12). The error bars on the symbols are the statistical
error, which is obtained by the binning analysis.
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Fig. 15. The specific heat C
S

(2)
2

for S
(2)
2 versus b obtained on

the surfaces of (a) L = 6 and (b) L = 11. C
S

(2)
2

is defined by

equation (13). The error bars on the symbols are the statistical
error, which is obtained also by the binning analysis.

tained under L = 6 and L = 11. Solid curves drawn in
the figures were obtained by the multihistogram reweight-
ing technique, and those curves apparently show an ex-
pected anomalous behavior indicating that C

S
(1)
2

is diver-
gent when N ′

S → ∞ (or equivalently N → ∞).
The specific heat corresponding to the extrinsic curva-

ture S
(2)
2 in equation (11) can also be defined by

C
S

(2)
2

=
1
N

〈 (
S

(2)
2 −〈S(2)

2 〉
)2

〉
, (13)

which reflects the transition as C
S

(1)
2

does. Curvature co-

efficient for C
S

(2)
2

was assumed to be 1, because S
(2)
2 is not

included in the Hamiltonian. Figures 15a and 15b show
C

S
(2)
2

against b obtained under L=6 and L=11. We can
see in C

S
(2)
2

the same anomalous behavior as in C
S

(1)
2

.
In order to see the anomalous behaviors in C

S
(1)
2

and
C

S
(2)
2

in more detail, we plot the peak values of them in
Figures 16a and 16b in log-log scales against N ′

S and N ,
respectively. The straight lines were drawn by fitting the
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Fig. 16. Log-log plots of (a) Cmax

S
(1)
2

against N ′
S and (b) Cmax

S
(2)
2

against N ′ obtained on the surfaces of L = 6 and L = 8. The
straight lines are drawn by fitting the largest three data of
Cmax

S
(1)
2

and Cmax

S
(2)
2

to equation (14). The peak values and the

statistical errors for the fittings were obtained by the multihis-
togram reweighting.

data to

Cmax

S
(1)
2

∝ (N ′
S)σ1 , Cmax

S
(2)
2

∝ (N)σ2 , (14)

where σ1, σ2 are critical exponents. Largest three data
were contained in the fitting in the case L = 6. Thus, we
have

σ1 = 0.911 ± 0.118, σ2 = 0.608 ± 0.076, (L = 6),
σ1 = 1.51 ± 0.08, σ2 = 0.948 ± 0.262, (L = 11). (15)

The result σ2 = 0.608(76) for L = 6 is inconsistent to the
fact that the surface fluctuation transition is of first-order,
however, σ1 = 0.911(118) is consistent to the discontinu-
ous collapsing transition. The results σ1 =1.51(0.08) and
σ2 = 0.948(262) under L = 11 support the discontinuous
transition of surface fluctuation.

7 Summary and conclusion

We have studied a compartmentalized fluid surface model
and found that the model undergoes a first-order collaps-
ing transition and a first-order surface fluctuation transi-
tion between the smooth phase and the collapsed phase.
The model is classified as a fluid surface model, although
the long-range order and the phase transition can be seen
at finite b. The compartmentalized structure is considered
to be a reason for the existence of the phase transition.
Consequently, the result is not in contradiction with the
standard argument for the non-existence of long-range or-
der in fluid membranes. Moreover, the critical point of the
transition is strongly expected at finite nc(�91), where
the collapsing transition and the surface fluctuation tran-
sition terminate and turn into continuous or higher-order
transitions. In fact, we demonstrated that the collapsing
transition remains first-order at n≤ 91 and disappear at
n = 120 on sufficiently large surfaces. It was also demon-
strated that the phase transition of surface fluctuation re-
mains first-order at n ≤ 66 and disappear at n = 120 on

sufficiently large surfaces, and that the transition weakens
and still survives at n=91.

A surface model with skeletons has also been investi-
gated by using the canonical Monte Carlo simulations.
The skeletons are composed of one-dimensional linear
chains and rigid junctions, whose size is chosen sufficiently
small compared to the mean bond length. The surface is
a triangulated sphere and divided into a lot of compart-
mentalized domains, whose boundary corresponds to the
skeletons, and it is almost identical to that for the com-
partmentalized fluid model. The skeleton surface is charac-
terized by (N, NS , NJ , L), which are respectively the total
number of vertices including the junctions, the total num-
ber of vertices on the chains, the total number of junctions,
and the length of chains between junctions. The length of
chains was fixed to L = 6 and L = 11, which correspond
to n = 21 and n = 66 the total number of vertices in a
compartment.

The mechanical strength is given to the surface only
by the skeletons. There is no two-dimensional curvature
energy in the Hamiltonian, while one-dimensional bending
energy is defined on the compartment boundary. The two-
dimensional Gaussian bond potential is included in the
Hamiltonian just like in the standard surface model of
Helfrich, Polyakov and Kleinert. The skeleton model in
this paper is different from the one with elastic junctions
in [22], because the rigid junctions cannot be identified
with the elastic junctions due to the property on the in-
plane elasticity at the junctions.

We found that the skeleton surface in this paper un-
dergoes a first-order collapsing transition and a first-order
surface fluctuation transition between the smooth phase
and the crumpled phase. The one-dimensional bending en-
ergy S

(1)
2 has a gap (or a jump) at intermediate bend-

ing rigidity b, and the two-dimensional extrinsic curva-
ture S

(2)
2 also has a gap at that point. These imply that

the surface fluctuations are considered to be a first-order
transition. Moreover, it is found that the mean square size
X2 also has a gap at the transition point. This implies
that the surface-collapsing phenomenon can be viewed as
a first-order transition.

The results in this paper together with those in [22]
show that the first-order transitions can be seen in
the spherical surface model even when the mechanical
strength is maintained only by skeletons, which are com-
posed of linear chains joined to each other at the junc-
tions. Moreover, the order of transitions is independent of
whether the junction is elastic or rigid.

We have studied two types of compartmentalized sur-
face models; the mechanical strength is maintained by the
two-dimensional curvature in the first model (the fluid
model), and it is maintained by the one-dimensional cur-
vature in the second model (the skeleton model). There-
fore, we can also conclude that the first-order transitions
occur independent of whether the shape of surface is
mechanically maintained by the skeleton (=the domain
boundary) or by the surface itself.

Vertices can freely diffuse inside each compartment
on the fluid surfaces supported by the skeletons. It is
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interesting to see how fluidity influences the transition of
the skeleton-supported model. Many interesting problems
remain to be studied on the surface model with skeletons.

This work was supported in part by Grant-in-Aid for Scientific
Research, Nos. 15560160 and 18560185.
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